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A new diKerencing scheme is proposed for the solution of hyperbolic partial differential 
equations by the method of lines. The accuracy of the scheme is shown to be between 
tirst and second order while the instability associated with the use of centered second- 
order differences is avoided. The method is successfully demonstrated on problems 
which have smooth solutions. 

A system of partial differential equations may be transformed into a coupled 
system of ordinary differential equations by discretizing all the equations in all 
but one independent variable. This procedure is known as the method of lines 
[l 1, 121. In this paper, hyperbolic partial differential equations depending on time 
and one spatial variable will be considered. Finite differencing in the spatial variable 
leads to a set of time dependent ordinary differential equations. The number of 
ordinary differential equations is equal to the number of partial differential equa- 
tions times the number of grid points used. 

The advantage of using the method of lines is that sophisticated packages 
[l, 4, 7, 151 exist for the numerical solution of ordinary differential equations. 
These packages contain iterative methods for handling nonlinearities and feature 
automatic step-size adjustment and integration-order selection to maintain a 
user-specified error and to solve the problem with near optimal efficiency. Previous 
applications of the method of lines to solve partial differential equations [12, 161 
have been geared to parabolic equations and have generally used centered, second- 

377 
Copyright Q 1916 by Academic Press, Inc. 
AU rights of reproduction in any form reserved. 



378 HEYDWEILLER AND SINCOVJX 

order differences. Using these differences on hyperbolic equations can lead to 
unstable solutions. To add stability, upstream (backward or forward) first-order 
differences could be used for the spatial discretization but these differences require 
the use of more grid points than centered differences for a given spatial accuracy. 
An artificial dissipation (or viscosity) term [14] is often added to a centered- 
differencing scheme to add stability but it is difficult to determine the magnitude 
of this term required for the stability and the effect of this term on the solution. 
Other stabilizing techniques [3, 8, 9, 141 which have been employed in explicit 
finite difference procedures are generally not applicable to the method of lines 
approach because they involve manipulation of terms in both the time and space 
discretizations. 

The method presented in this paper uses a three-point difference which is a 
biased average of forward and backward differences. The direction and amount 
of the bias are adjusted to give stable difference schemes with an accuracy between 
the usual first- and second-order schemes. Use of these biased differences allows 
the efficient solution of hyperbolic partial differential equations by the method of 
lines. This method of solution is especially attractive for coupled sets of hyperbolic 
and parabolic equations. 

ACCURACY 

The difference scheme to be studied is given by 

C=B--A=*1, (lb) 

where A and B are integers greater than or equal to zero, A + B is an odd integer, 
and ET is the truncation error. This equation may be rearranged to give 

(2) 

This arrangement shows that the proposed scheme is a weighted average of A 
forward differences and B backward differences. By replacing the two differences 
with their Taylor series expansions, one obtains 
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Since B - A = f 1, this equation reduces to 

,I&= futl--> Ax dY 
A + B 2 dx2 

($9’ ;; i . . . 
(4) 

For A + B equal to 1, the difference scheme reduces to either the usual forward 
or backward difference with its associated first-order truncation error. When 
A + B is greater than 1, the first-order term of the truncation error is reduced by 
a factor of A + B. In the limit as A + B approaches infinity, this difference 
scheme approaches the second-order accuracy of a centered difference. 

STABILITY 

As the stability of a three-point differencing scheme is difficult to analyze, the 
theoretical study of stability will be limited to the equation 

a u/at = co au/ax. (5) 

An implicit in time difference scheme for this equation is given by 

uy - Ui” AU;A1 + ClJi”+’ - BU;Y--’ 
At = co 1 (A + B) Ax I ’ (6) 

where Uin is the solution to the difference equation at Xi and t, . To show uncon- 
ditional stability with the Fourier method of analysis [14], one assumes that the 
solution of the difference equation is of the form 

u,n = neiPiAs 
Y  9 (7) 

where j = (-1)1/2 and then shows that the magnitude of the complex constant y 
is less than 1 (the von Neumann condition). Substituting this expression for Uin 
into Eq. (6) and simplifying leads to 

y = (1 - rC - ,.&+PAX + &-f~d~)-l, 03) 
where 

r = C&/(A + B) Ax. (9) 

This equation may be rewritten as 

Y = (1 - rC(1 - cosp Ax) - rj(A + B) sinp Ax)-l. (10) 

For this procedure (Eq. (6)) to be unconditionally stable, the magnitude of y 
must be less than 1. The requirement is satisfied if 

l- rC(l - cosp Ax) > 1. (11) 
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This condition may also be written as 

C(C, At/(A + B) Ax)(l - cosp dx) < 0. (12) 

Since cos p Ax < 1, C must be positive if C, is negative and C must be negative 
if C, is positive. This implies that A < B for C, < 0 and A > B for C, > 0. 
To maintain stability, the averaging of the forward and backward differences is 
biased upstream relative to the motion of the wave. As A + B increases in value, 
the magnitude of y approaches 1, which is the condition of marginal stability. 

For an explicit in time procedure, the finite difference scheme for Eq. (5) is given 
by 

(U;” - u,“)/At = C,,[(AUi”,, + CUi” - BU,“_J(A + B) Ax]. (13) 

The Fourier method of analysis is applied again. Using Eq. (7) and simplifying, 
one obtains 

y = 1 + rC + rAejpAr - rBe-ipAx, (14) 

where r is given by Eq. (9). The expression for the magnitude of this complex 
number may be written as 

1 y 1 = (1 + r[2C(l - cosp Ax)] + r2[C2(1 - cosp Ax)~ + (A + B)2 sin2p Ax])~/~. 

By setting 1 y 1 equal to 1, solving for r, and performing some algebra, one can 
obtain the equation 

r = -C/(A2 + B2 + 2ABcospdx). (16) 

The smallest value of r will occur when cosp Ax equals one. This condition leads 
to the restriction 

At < -C Ax/C,(A + B) (17) 

on the size of the time step. Since At and Ax are both positive, this equation gives 
the same relationship between the signs of C and C, as that found for the implicit 
case. 

For A + B equal to 1, Eq. (17) gives the time step restriction for an explicit 
procedure based on forward (C, > 0) or backward (C, < 0) differencing. As 
A + B increases, the time step restriction appears to become more severe. However, 
since the spatial truncation error is reduced by a factor of A + B, a value of Ax 
that is A + B times as large can be used with the biased difference scheme for the 
same spatial truncation error. Therefore, for a given error, the maximum time 
step allowed for stability of the biased difference scheme is independent of the 
value of A + B as long as the first-order term dominates the truncation error. 
Since a larger value of Ax is used with the biased difference scheme, fewer difference 
equations must be solved per time step. 
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The method of lines procedure gives the ordinary differential equation 

dUJdt = C,,[(AUi+l + CUi - BU,J(A + B) Ax]. (18) 

The stability of this procedure is dependent on the integrator (type and order) 
used. In the previously mentioned packages for the solution of ordinary differential 
equations, the lowest-order method uses an explicit Euler’s method for a predictor 
and an implicit Euler’s method for a corrector. Since the explicit and implicit 
Euler’s methods correspond to the explicit and implicit finite difference schemes 
given in Eqs. (13) and (6), respectively, the method of lines procedure is condi- 
tionally stable for the simplest integration method. The procedure should be 
conditionally stable for the higher-order integration methods in these packages 
because all of these methods are stable for the same class of equations [2]. 

RESULTS AND DISCUSSION 

To use the method of lines to solve partial differential equations, a suitable 
integrator must be chosen to solve the ordinary differential equations resulting 
from the spatial discretization. The integrator used was developed by Hindmarsh 
[4] and is of the type first proposed by Gear [l]. For all the problems solved, the 
nonstiff option was used. With this option, the Adams methods are used with 
functional iteration so there is no associated matrix problem. 

The first problem solved was 

with 

au/at = -au/ax, (194 

U(0, t) = 0 (19’4 

and 
U(x, 0) = ~cdx); O<x<l. (19c) 

The exact solution, U(x, t) = U&x - t), is shown as the triangular wave in 
Fig. 1 at time 0.4. The numerical results for this problem are presented to show 
the effect of the size of A + B on the accuracy and stability of the procedure. 
The numerical solutions are plotted in Fig. 1 for A + B equal to 1 (backward 
difference), 11, 101, and infinity (centered difference) at times of 0.1, 0.2, 0.3, and 
0.4. Although the value of 0.01 used for dx is not small enough to give much 
accuracy, it is sufficient for a visual comparison of the numerical solutions for the 
different values of A + B with the exact solution. As is expected, increasing A + B 
improves the accuracy but is detrimental to stability. By a time of 0.4, the shape 
of the wave is severely distorted for A + B equal to one while the oscillations are 

581/22/3-8 



382 HEYDWEILLER AND SINCOVEC 

continuing to increase in magnitude for A + B equal to infinity. For probIems 
of this type, the choice of A + B is dependent on the desired accuracy, the value 
of Ax and the length of the time integration interval which determines the number 
of time steps. 

A + B - I (backward difference ) 
ID 10r 

+=02 

0, 05. 

A+B-II 

A + B - 101 

A + B - m  (centered difference) 

FIG. 1. Effect of A -I- B on sohtion of Eq. (19) (- - - exact solution). 
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The second problem solved was 

au/at = -(a/ax)(p), (204 
with 

U(0, t) = 0 (2Ob) 
and 

U(x,O) =x; O<x<l. WC) 

This example is due to Richtmyer [13] and is discussed in [14]. The proper direc- 
tion of bias was determined from the linearized form of the equation. A value of 
0.01 was chosen for dx. To test the effect of A + B on accuracy, values of 1, 11, 
101, and infinity were used while the maximum time integration error was fixed 
at 1O-s. To maintain accuracy at the right boundary, the following one-sided, 
second-order difference scheme was used. 

(apx)(w,") = 9[(3u12 - 4% + uLp(h)i, 

where U, is evaluated at x equal to 1. 
The analytical solution to this problem is given by 

(21) 

U(x, t) = x/(1 + t). (22) 

For each of the values of A + B used, the maximum error of the numerical 
solution in the interval is given for times of 0.5, 1, 5, and 10 in Table I. Increasing 
A + B from 1 to 11 reduces the error by an order of magnitude while almost 
another order of magnitude decrease is gained by increasing A + B from 11 to 
101. For the centered difference case (A + B equal to infinity), the maximum 
error always occurred at or near the right boundary. This is due to the fact that 
the truncation error of the difference equation used at the right boundary, Eq. (21), 
is twice as large as the truncation error for the centered differences used for the 
interior points. 

TABLE I 
Effect of A + B on Truncation ErrorO 

Maximum error 

Time 

A+B 0.5 1.0 5.0 10.0 

1 0.135 * 10-8 0.173 * 10-p 0.149 * 10-a 0.109 * 10-a 
11 0.123 * 1O-s 0.158 * 10-a 0.136 * lo-* 0.994 * 10-a 

101 0.135 * 10-a 0.181 * 1OV 0.150 *lo-” 0.201 * 10-t 
co 0.477 * 10-a 0.140 * 10-s 0.123 * 1O-4 0.115 * 10-d 

LI Solution of Eq. (20). 



384 HEYDWEILLER AND SINCOVEC 

The third problem solved was 

with 

and 

Y(0, T) = 1 (23’3 

WI, 0) = 0; O<<<l. (23~) 

This equation describes the disappearance of a chemical species by an Nth-order 
reaction in a plug flow reactor [IO] in terms of dimensionless reactant concentra- 
tion (u), time (T), and axial position (0. The solution was obtained for K equal 
to 1, 5, and 10 and N equal to 1, 2, and 3. A value of 0.01 was used for d5 and 
since the convective term is the same as that of the first test problem, Eq. (19), 
A + B was chosen to be 11. No difficulties were encountered solving this problem 
with any combination of the parameters. A typical solution is shown in Fig. 2. 
The small disturbance behind the front remains bounded and actually decreases 
with time. At a time of 1.5, the front has passed through the reactor and the 
solution is close to steady state. 

FIG. 2. Solution of Eq. (23) for K = 5 and N = 2. 
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FIG. 3. Solution of Eq. (24) with dissipation added. 

The last problem attempted was 

au/at = -@/a~)(@~) - 98O((a@/&v) + (dH/dx)), 

aqat = -(a/ax)(uq, 

(244 

CW 
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with 
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U(0, x) = 40, 

@(O, x) = 20 - H(x), 
qt, -400) = cqt, 400) = 40, 
qt, -400) = @(t, 400) = 20, 

H(x) = max[O, 10 - 10(~/40)~]. 

(24~) 
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FIG. 4. Unstable solution of Eq. (24) with A + B = 11. 
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These equations have been studied by Houghton and Kasahara [5, 61. The equa- 
tions represent the flow of a fluid over a barrier, H(x). The fluid velocity in the 
x-direction is denoted by U while Q, denotes the fluid depth. The solution is 
presented in Fig. 3. Besides a major stationary shock developing on the down- 
stream side of the barrier, the solution contains smaller fronts moving in both the 
positive and negative x directions. 

A value of 2 was used for Ax and the direction of bias was determined from the 
linearized form of the equation. Values of 1, 11, 101, 1001, and infinity were tried 
for A + B. It was found that increasing A + B had a stabilizing effect. This is 
probably because a centered difference can best account for the movement of 
fronts in opposite directions. The biased difference scheme did not yield a stable 
solution for any value of A + B. Fig. 4 shows the growth of numerical instabilities 
for the case of A + B equal to 11. The solution presented in Fig. 3 was obtained 
by adding dissipative terms to a centered difference scheme. 

CONCLUSIONS 

The biased differencing scheme given in Eq. (1) can be used with a suitable 
ordinary differential equation integrator to solve many hyperbolic partial differen- 
tial equations by the method of lines. It has been successfully used on both linear 
and nonlinear equations which have sufficiently smooth solutions. This procedure 
has failed to solve a set of equations whose solution develops a shock discontinuity 
without the addition of dissipative terms. 

From the example problems, it appears that the biased differences will give 
stable solutions to any problem which can be solved using upstream, tirst-order 
differences. Because of the greater accuracy of the biased differences, more efficient 
solutions can be obtained by using them in place of the upstream differences. 
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